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Abstract

The scattered fields from a spherical body eccentrically located within a host
sphere are found by a derivation that satisfies the boundary conditions at
both interfaces. The source, which may be composed of any linear combina-
tion of S and P waves, is also arbitrarily located within the host sphere. The
scattering system has applications in seismic scattering, since the scattering
interaction between a scatterer and the Earth’s surface is significant when the
scatterer is located near the surface. This interaction can affect subsequent
seismograms.
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1.

Introduction

Scattering of elastic waves by spherical bodies is often studied in the con-
text of seismic theory. The simplest system for which an analytical solution
can readily be obtained for the entire scattered elastic wave field is that of
a sphere in an infinite elastic medium (Ying and Truell, 1956; Einspruch,
Witterholt, and Truell, 1960; Dubrovskiy and Morochnik, 1989). More com-
plicated techniques must be employed to take into consideration the effects
of multiple scattering (Wu, 1985; Wu and Aki, 1985) and irregularities in
the geometry of scatterers (Waterman, 1969, 1976; Varatharajulu and Pao,
1976). When an inhomogeneity is located near an interface, the interaction
between the inhomogeneity and the interface is not insignificant compared
to the incident field, and must be considered when the scattered fields are
calculated.

In this report, we derive the equations describing the scattered field from
a spherical scattering body eccentrically located within a host sphere. The
interface, in this case, is the host sphere (free) surface, which can be made
large compared with the size of the scatterer. Such a system is of interest
in seismology, since it can be used to describe the scattered fields due to
inhomogeneities located near the surface of the Earth (host sphere). In order
to solve this problem, we expand the relevant wave fields in terms of vector
spherical harmonics and use the interface boundary conditions at both in-
terfaces. In order to solve both sets of boundary conditions simultaneously,
we translate the spherical vector harmonics representing the individual fields
between the coordinate systems of the host and scattering spheres. This work
is similar to previous works in which eccentric sources are embedded within
a spherical host (Thompson, 1973; Glenn et al, 1985; Rial and Moran, 1986;
Zhao and Harkrider, 1992); however, in addition to an eccentric source, we
also include an eccentrically located scatterer. The notation used in this re-
port is similar to that of a previous paper on light scattering from a host
sphere containing an eccentric inclusion (Videen et al, 1995).



2.

Theory

The geometry of the scattering system is shown in figure 1. A host sphere
of radius a and elastic moduli X and p is centered on the z;, y1, 21 coordi-
nate system. A scattering sphere of radius a’ and elastic moduli A’ and y/
is centered on the zo, ¥a, 2 coordinate system, located at (z; =0, y1 = 0,
z; = d). A source is centered on the z3, y3, 23 coordinate system, located at
(ry = rg, 0; = 05, p1 = 0) such that Z3 is parallel to 7, and ¢; is parallel
to 93. A time dependence of exp(—iwt) is implicit. Real seismic sources have
a more complicated time dependence. For linear, homogeneous systems, we
can solve the equations for a general time-dependent source using integral
Fourier transformations:

flap) = [ F (k) exp (~iashy) dk; 1)

Flk)= o [ f () exp (inshy) da @)

In this report we solve for the amplitudes of the scattered fields at specific
frequencies F (k;), which we can transform to find the time-dependent am-

plitudes using equation (1).
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Figure 1. Geometry of scattering system showing coordinate systems of host (z1,v1, 21),
scatterer (T2, Y2, 22), and source (x3,Yy3, 23).



We reach the general solution by satisfying the boundary conditions on both
spherical interfaces simultaneously. In doing so, we consider the fields inci-
dent on the interfaces of the two subsystems (host and scattering spheres)
separately. We use the vector spherical harmonics (Hansen vectors), which
have the following form in this derivation:

L,({:Zl,j = [Zr(lp)’(krj) P™(cos Oj)eim"j] + (3)
A 1 d - )
R I ()} N pm . )etm®i
6, [krj o (er)dej PT(cosb))e } +

A 1 m om imp;
j [Ez,(l”)(krj) 3 P (cosb;)e ‘pf} ,

S o

= 0. Y () (g P Netmes | 4
0; [Sinejz" (krj) Py (cosb;)e } (4)

d - .
?; [zﬁp )(krj)-"“dQ.P,T (Cosej)em‘pj} :
J

N(p),' = 7 [%i—z,([’)(krj)n(n.{— I)P;n(cosej)eimw} + (5)
J

. d - .
e (P N _—_pm N pimp;
0, [krj ar; (r]zn (kr])) 7 P (cosb))e ’} +

P —— (p) kr . im Pm N\ pimep;
on l:krj d’rj (TJZn ( r])) Sinoj n (COSHJ)B )

where the prime denotes a derivative with respect to the argument, the index
j corresponds to the coordinate system used (j = 1,2), and z{?)(kr;) are the
spherical Bessel functions of the first, second, third, or fourth kind (p =
1,2,3,4) (Ben-Menahem and Singh, 1981), and

PM(cosb;) = \j (2n2—’£73)_ﬁnm_)!m)!P,§"(cos 8;) , (6)

where P"(cosf;) are the associated Legendre polynomials.

It is convenient to consider the vector surface harmonics, Ppm, Bam, and
Crm when solving the boundary conditions. The vector surface harmonics
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are defined in terms of the vector spherical harmonics:

1
ngzj = Pnmjz 1(10)1(]””1) + Bnmjk__z ”)(krj) (7)
M;‘g” = Cnm]z (kTJ) ) (8)

1 1 d

NS{QL] = an,jﬂ;zgp)(krj)n(n + 1) + Bnm,j [7‘3_1’; dT‘j (7‘] (p)(kTJ))jl (9)
We start the derivation by expanding the fields in terms of the vector spheri-
cal harmonics and satisfying the boundary conditions on the interface of the
scattering sphere.

Scattering Sphere

First we examine the fields that strike the outer surface of the scattering
sphere. We consider an arbitrary field incident on the system that can be
expanded with the spherical Bessel functions of the first kind, jn(kr2) :

Z Z CL nm2 + a'(2 M(l +G§%NSTL’2 (10)
n=0m=-n
(1)

= Z Z Porm,2 [ D) 20 (kyrs) + a&n(n + 1) 2822 (kﬁm}

n=0m=-n k/jT‘Q

20 (k )
By (a0 Ker2) | [0 (sTe) v
kar2 kﬁTQ

+ Cnm,Qagzzr;zr(zl) (kBTQ)

= Z Z Aq(q,lrzl (kar2s kﬁTZ) an,2 + Ag?z (ka'l"g, kﬁrfl) Bnm,2 + As;)z (kﬁTQ) Cnm,2 )

n=0m=—n

where k, and kg are the compression and shear wavenumbers external to
the scattering sphere, respectively. Similarly, k, and kj; are the compression
and shear wavenumbers internal to the scattering sphere, respectively. The
coefficients al) | al?), and a{3), represent the field from the source. Similarly,

the scattered ﬁeld from the scattering sphere may be expanded with the
spherical Bessel functions of the third kind, A (kr):
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This scattered field interacts with the host sphere (free) surface, which reflects
incoming spherical waves onto the scattering sphere. Thesc may be expanded
with the spherical Bessel functions of the fourth kind, A (kry) :

o0 n
4 4
> Y L + M, + NG (12)

n=0m=-n

Z Z C’r(li'l)i (ka’f'g, kBTZ) an,Q + 01(12;)1 (kaT2, kBTQ) Bnm,2 + C,(S,)L (kﬂTQ) Cnm,2 .
n=0m=-n

The fields internal to the scattering sphere may be expanded into standing
waves with spherical Bessel functions of the first kind:

o0 n
> S dOLY) , +dAMY) , + dONG (13)

n=0m=-n

i i D), (kgﬂ”m k;ﬂ‘z) Pomz + DE), (k;ﬁ, kgr 2) Bom,2 + DY), (k'gT 2) Chm2 -

n=0m=-n

With the expansions of the fields defined, we can now satisfy the boundary
conditions at the interface of the scattering sphere. The stress vector across
a spherical surface for a displacement field given by

u = U(r)Ppm + V(r)Bum + W(r)Crum (14)

can be calculated as (Ben-Menahem and Singh, 1981)



T() = [(/\ +2p) %g + 2/\—[; —n{n+ 1))\-‘;—'} P™(cos §)e™ (15)
N dv U-—V 6 dW W 1 8 =m imy
+"“[(‘d7+ - )%*(W"?)smea;]ﬂ(“s”e
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+W[(:ﬁ:+ ; )giﬁ—éé@_(_d?_T> @]Pn(“s")e |

In order for the displacement field and the stress tensor to be continuous,
the following six boundary conditions must be satisfied at ry = a’ :

AD (korg, kara) + BY, (kara, igra) + CO, (kara, kgra) = D), (Kura, Kyr2) , - (16)

AD (g, ksra) + BE, (kara, kgrs) + C2) (karg, kgra) = D2, (Kora, Kgra) , - (17)

AR, (kgrs) + BE), (kora) + CE, (kgr2) = D, (Kjra) (18)
d | 2\ 140 0 M
(A +2) -+ [AD), (Kars, kgrs) + B, (Kars, kors) + CL) (Kara, kera)] = (19)

n(n+1)2 [A®), (kara, kgrs) + B, (Kara, kgra) + Cio) (Kars, kgra)| =

a
d 2N ] , by , ,
|:()\/ + 2,/) '('17,_2 + —07—:| D,El]% (karg, kﬁ'f'g) - TL(’I’l + 1);D1(1272: (kaT'Q, kﬁ’f'g) s

a’u;{i‘ [A2), (kara, kgra) + B, (kara, kgra) + G (kara, kara)] + (20)
2

7 [A'Szl'rzl (ka’fg, kﬂ'f’z) -+ B‘Sl}"l)'?y (ka’f'g, kgTQ) + CT(:,% (ka’rg, klg‘l'g)] -
1 [AQ), (kars, kgrs) + B, (kaa, kor) + C (kar, kgrs)|

=4 {afg‘j_zp,gz% (Ko, kiyra) + [D, (Kors, Kra) — D, (Kare, k;,rz)]} ,
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We are interested primarily in the external fields of the scattering sphere.
By substituting equations (16) to (18) into equations (20) to (21), we can
eliminate the internal field coeflicients and express the scattered external field
coefficients in terms of the incoming field coefficients. Then, by expanding the
vector surface harmonics in terms of the vector spherical harmonics (given
in eq (10)), we can derive the following expressions for the vector spherical
harmonic coefficients:

0, = QI +alLQI5, + B RY, + RS, (22)
b = alQim + R (23)
and
b3 =al) Q3L + aﬁf’,)n 8 +cDRE 4+ RS (24)
Explicit expressions for Qnm, B ORM RS Q%2 R2 Q3 .Q%., R

and R33 are given in appendix A.

2.2 Host Sphere

We next examine the fields in the host (Earth-centered) coordinate system.
First we consider a source that can be expanded with spherical Bessel func-
tions of the third kind, AV (kry):

1 —
usou -

Lo + Mo + € N, (25)

E<1) (r))Pnm1 + E@ (r1)Bpmi1 + E& (r1)Crma -

v't Mg |I| Mg

The scattered and incident fields from the scattering sphere may be expanded
with the spherical Bessel functions of the third kind, A{" (kry),

o0 n
Wa = 2 3 fiLum + SOMun + FONG, (26)
n=0m=-n
oo n
= > Z FX () Pomi1 + E2(r1)Brmi + F& (1) Crm,1 »
n=0m=-—




and the spherical Bessel functions of the fourth kind, h2 (kry),

4 4 4
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In appendix B, we provide expansions whereby relationships can be derived
between the a{) and e®),, b®) and f®), and c® and g{?) coefficients. The
expansions (26) and (27) are valid in the region where r; > d: i.e., near the
host sphere (free) surface. Hence, we need not be concerned with the pole
that occurs at r; = 0 for the scattered and incident fields, since the expansion
is not valid in this region. Since the stress vector across a free surface must
be zero, the following boundary conditions apply at r; = a:

d  2X
Sl T (1) (1) (1) —
[(/\ + o) g+ } (S () + F(r) + GOi(r)) = (28)
n(n + 1)2— (B2 () + E&(r) + Gon(m))
d
(2) (2) (2)
ad’f'l (Enm('rl) + an(rl) + Gnm(rl)) + (29)

(B8 (ry) + FO(r1) + GEh(r)) — (BE&(r) + FR(r) + G2 (r)) =0,
d
age (BEMm) + FQLra) + G (ro)) = Bilra) + Fin(ra) + Gom(r) =0 (30)

As with the scattering-sphere coefficients, we express the coefficients in the
host-sphere coordinate system in the following form:

W = (e + £10) Sik+ (e + F5) Samm (31)
92 = (e@,+ £2) S » (32)

and
@ = (B + f8) S+ (el + fim) Sam - (33)

In appendix A, we give explicit expressions for S3%,, S35, 522, S31,, and S},




2.3 Fields Interior to the Host Sphere (Earth)

The displacement fields given by equations (10) to (12) are equivalent to
the displacement fields given by equations (25) to (27). By performing a
translation of the spherical vector harmonics from the host coordinate system
to the scattering-sphere coordinate system (using the results of app B), we
can put equations (31) to (33) into the following form:

(WS, + B, = 3 .o — bSO (30
n'=0
3) ml 1
b( SI3A( ) Smr(:’n)’

5262 = Zcii‘l’ AT 8 Bimh b2 52 Al @) s2 BWD, (35)

Crn'm n',n
n'=0

and

(DS + €5 = Y Y AmD 4 D B ) shotmy (3)

n'=0

(3) @33 (ml) (2) @33 (ml)
— by SamAnt | = by monmBni -

Substituting equations (22) to (24) into these expressions yields

DS+ eS8 = =Y ai, (QRSI Ol + Q3818 AT+ (37)
(2T;=023 313 (m,1)+
afim (QimSamCars + sian‘m V) +
(1) (R“ 511 C(jn,l) 513 A(m 1) Cif/ﬁl;ll))_'_

n’mR 513 B(m 1)
(3) (R Sll C(ml R S Ar;zl))
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(D52 = 5 ) (Q%,52.B00) + O, (RS, SZEC) + (39)

n'=0
oS, (Q%,S2,A50) + ¢80, (RZ,S2 ALY — AT +
(3) ( 33 522 (m 1))+ 513271 (st Szz B(m 1) B(ml)

Onim

and

o0
6(1)531 + N — —Z gllzn( }l}msm (ml) QSI Sm 7?1))‘*' (39)

nm~nm
n'=0

(2) ( 22 SmBml))-l'

n' n’
o (@S O + Q% SBATY) +
(1) (Ru 531 C(m 1)+R31 533 A(m 1))
(2) (R22 Sf;f’nB(ml) B(rln,l)
(R 531 C(m A 4 Rff‘mS mAml) A(m 1))

nl

The a®), and e{®) coefficients are related by equations (B-14) to (B-16)
(app B). Since the e{f), coefficients are the coefficients for the incident field,
which is assumed to be known, the a{?) can be easily determined, and equa-
tions (37) to (39) represent three sets of equations containing three sets of
unknowns c¢(?) . Numerical results based on this analytic solution can be ac-
quired following the same algorithms used in light scattering (Videen et al,
1995). Equations relating the various fields are given by equations (22) to (24)
and (31) to (33); the coefficients used in these equations can be calculated
from the equations given in appendix A. Computational results obtained
from similar expressions in the field of light scattering have shown that the
coefficients of the scattering harmonic terms tend to have a negligible con-
tribution to the scattered fields for n > ka + 4 (ka)"/® + 2 (Wiscombe, 1980;
Bohren and Huffman, 1983). It is likely that a similar truncation criterion
holds for the elastic scatter. With the truncation of the summations given
by equations (37) to (39), a solution can be found through matrix inversion.
With the o). and c®), known, b, can be determined by equations (22)
o (24). Hence, the entire displacement field within the host sphere can be
found.



2.4 Incident Field

Although the solution derived in section 2.3 is completely general, in many
applications we are interested in a specific case where a point source is located
at some position within the host sphere (r; = 75, 61 = 65, p1 = 0). We specify
a source coordinate system (z3,ys, z3) such that 23 is parallel to 7, and
is parallel to {3, as shown in figure 1. The derivation is valid only when the
source is closer to the center of the host sphere than is the scattering-sphere
center (rs < d). The limitation of the validity is a result of the expansion
that we use in translating the vector spherical harmonics. If the source is
farther from the center of the host sphere than the scattering sphere (rs > d) ,
then we would need to use a different set of translation coefficients, and the
derivation would be slightly different (Stratton, 1941). The source can be
expanded as

o0 n
3 3 3
o= 3 ALY+ rAMY + hEOND .. (40)

n=0m=-n

This field can be expressed in a coordinate system whose origin is the same as
the host (Earth) coordinate system, but whose axes are parallel to the source
coordinate system by a translation of a distance r; in the —23 direction. The
source in this (z4, Ys, 24) is

o n
. 3 , 3 : 3
u:ou = Z Z zgr?’ngerzA + 2512721M£173L,4 + Z;%Ngrrzz,ll . (41)
n=0m=-n
We can rotate this vector field using the results of appendix B to give the
coefficients of equation (25).

We provide formulae by which the incident field coefficients can be derived
for two cases. These represent simple, but solvable sources. The incident field
coeflicients from more complicated sources can be substituted for the coeffi-
cients given in this section. In the first case, we consider the field due to an
explosion. In this case, the source pressure wave is not angularly dependent,
and we can express it as —poLgf)),g,, or as

h(), = RGP = —Pobn06m,0 » (42)
h) = h@P =0, (43)

and :
K = K = 0. ”

11
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In the second case, we consider a source that emits shear waves only, whose
shearing stress 7,, = 7,sinfs is applied at the inner surface of a spherical
cavity centered on the source. In this case the source coefficients are of the
form

hg% = h%S =0, (45)
h®), = h® = 7,60,16m0 , (46)

and
hG), = hiw =0. (47)

If the shear is in another direction, we can use the vector rotation results
given in appendix B. The final expressions for the source coefficients in the
host sphere coordinate system are given by equations (B-31) to (B-33).



3.

Implications

In this report, we derive equations describing the scattered fields from a
spherical scatterer located eccentrically within a host sphere. The source is
also arbitrarily located within the host sphere, and can be chosen to simulate
a Pwave, S wave, or any linear combination of the two. We can use this theory
in seismology to predict the scattering interaction between a scattering body
and the Earth’s surface.

The scattered fields are complete, and exact solutions for the elastic wave-
field produced by the spherical scatterer are expressed. Because the solution
presented here is almost entirely analytical, it avoids the need for much of
the computationally intensive algorithms, such as finite-difference schemes,
that would normally be required to solve this problem. Also, because we
have made very few assumptions concerning the boundary conditions, the
analytical solution given here should be well behaved.

This theory provides a basis that should prove useful in understanding and
predicting seismic scattering. Using techniques developed in electromagnetic
scattering (Videen et al, 1995), it should be possible to extend this theory
to describe the scattering from an arbitrary body rather than a spherical
one. Hence, this theory is an important first step in demonstrating a method
for analytically deriving scattered elastic wave fields from anomalies such as
magma chambers or subducting slabs near the Earth’s surface.

13



Appendix A. Boundary Coefficients

We can find the coefficients that satisfy the boundary conditions at the scat-
tering sphere outer surface (ry = a') by first eliminating the dependence on
the internal field coefficients. Performing some algebraic manipulation and
taking advantage of the differential equation defining spherical Bessel func-

tions,

rzz;: (r) + 2rz), (r) + [7‘2 -n(n+ 1)] 2, (r) =0,

(A-1)

we can put the coefficients that satisfy the boundary conditions on the scat-
tering sphere into the following form:

11
nm

13
nm

22
nm

31
nm

33
nm

and

B — AYB

" BIB3 - BB}

A3BE — A3BS

 BIB; - BB}

Ja (1,1)
.31
AiB) — A3Bi
AlB; — A3B]
BiB3 — BB ’

CiB3 — 3B
CiB3 — G387
" B!B: - BB}
Jn (4,1)

Jn(3,1)

CiB; — C3B1
BB} - BB}
CiB; — C3B]
BIBS — BIB3 °

-

-

(A-2)
(A-3)

(A-4)




16

where

and

Ay = (A1D] - A;DY) (D;Dj - D;D3)
— (43D} — A;D§) (D1D§ - D3 D})
A3 = (41D - A3DY) (D; D - D3 D3)
— (43D} - A3 D}) (D} D} - D3 DY)
(

By = (B}D}-B;Dj)

D;D} - D;D3)

~ (B3 D} - By D) (D} D} - DY)
By = (BD}-B;D})(D;Di - DiD3)
— (ByD} - B;D}) (D} D3 — D3 DY)
cr = (Cppi-cyp}) (DiD; - DiD3)
— (¢33 - ¢;D3) (Di D3 - D3D})
c; = (crpi-c3D}) (D;D3 - DiD3)
— (¢3p3 - c303) (DIDE - DiD})

'Al = H2j~1(1,km)\,lhal),

j
A?- = Hy; (1,kg, A, p,0'),
B; = Hyj1(3,ka, M p,a'),
B} = Hy;(3,kg, A pa),
C} = Hyj_1 (4, ks, p,0'),
C? = Hy(4,ks A pa),
D; = Hy1 (1, kN, 1, a'),
D} = Hy (LEg,X, i),

(1)

Jo(i,7) = Hai, kg, A ') — 22 H,,

z(y)

n

(ja k/ﬁa )‘,a /-‘t/7 a,) )

(A-12)

(A-13)



()
Hy(p, kA pa) = 2 [zép"(ka)—f‘—@-—(i@], (A-26)

ka
2P (ka) O (k) — ukas®
Hy(p,k, N p,a) = 2u(n*+n— 1)—k—(;——— 2u2P (ka) — pkaz,P (ka) , (A-27)
H3(ps ka )‘7 Ky a) = Iiz—u"’}%?g——ll —ka (’\ + 2#):' zszp)(ka) - 4N27(zp)l(ka) )
H4(p>k7)‘nuaa) = ,un(n + l)Hl(p7 k7 a) . (A_28)

Sll

nm

513

nm
nm
531

nm

nm

The coefficients that satisfy the boundary conditions on the host-sphere outer
surface (r; = a) are

— H3(3 ka,)\, H,a )H2(4 kﬂ,)‘ ®,a ) H1(3 km/\ M, a)H (47 kﬁa)‘aﬂa ) (A—29)
H1(4a kaa)‘a U, a )H4(4 kﬁ7)‘ K, Cl) H3(4 ka’)‘ K G)H2(4 kﬂaA M, a )
H4(3 kﬁ,)‘ m,a )H2(4 kﬂaA K, a) H2(37k57>‘::u7 )H (4 kﬁ A, U, 0,) (A—30)
H1(4 Ko A, M a)H4(4a kﬁa/\a 2254 ) H3(4aka7)‘aua )H2(4 kﬁ A, B a‘)
_H1(37kﬁ7)‘a/~1'7 a) (A-31)

H1(4, kﬁ,)\, My a)
H3(37ka-,)‘a#> )H1(4 km)‘ U, a ) ( )H3(4»kaa)‘7u7a)
H3(4a Koy A 11, @ )H2(4 kﬁ’A 2 a) H1(47 Koy A, 1, >H4(47 kﬁ7’\a K, a)
Ha(3, kg, 1, @) Hy (4, Koy N, 1, @) = H(3, k3, A, @) H(4, ay N, 1, 0)
H3(4: kaa/\a.u',a)H2(47 kﬁv )\,,LL, ) H1(4 Koy A, My a)H4(4’ kﬁﬂ\vu?a’)

Hl 3? ka’ )‘a K, a

(A-32)

(A-33)
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Appendix B. Vector Translations

Stein (1961) and Cruzan (1962) derived translation addition theorems for
vector spherical wave functions that can be used to express the displacement
fields in one coordinate system in terms of displacement fields in another
coordinate system. These results are also given by Ben-Menahem and Singh
(1981). We use their results to find relationships between the coefficients a®)
and e®)  b® and f® and c®) and g¥). For a translation along the z-axis
with no rotation, the vector spherical harmonics are related by

nm2 - Z CflTL'Z)Lig?m,l ’ (B'l)
n'=0
w .
Mo, = 3 ATIMED, + BN (B-2)
n/=0
) = p(mi)p ( )
m,i m,i
anm,2 = Z Bn,n’ M qml + An n' Nrgml . (B_3)
n'=0

If p= 3 or 4, then i = 1 in the region where r; < |d|, and 7 = p in the region
where r; > |d|. Recurrence relations for the scalar translation coefficients
C{™? were derived by Bobbert and Vlieger (1986), which greatly facilitate

nl

calculations. The results are

Ccl%) = Vo + 120 (kd) (B-4)
), = Vo ¥ 129(kd) (B-5)
; 1 2n+3 n+1 ;
Coly = \/ ’\/ o) B-
ntln (n+1)V2n' + 1"\ o = IC"’” -1t (B-6)

/271 +1 0, 2n+1 0,
n Z'n—lC 1n;—(n'+1) on ,+30 w41 0

Jo—m+ ) n+m)en + 1)CT = /(0 —m+ 1) +m)@2n +1)C )~ (B-7)

(" —m+2)(n' —m+1) (m-14) (n+m)(n'+m—1) (m-1,)
kd\l ) Comsr — kd o = 1) Crom-1
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From the scalar translation coefficients, the vector translation coefficients can
be easily derived:

; ; kd |(n —m+1Dn'+m+1) mi)
Amd — olmd) _ cmi (B8
nn 41 (2n' + 1)(2n + 3) na+1 (B-8)

_kd | (0 —m)(w +m)
(2n' + 1)(2n' — 1) ™ML

—imkd (m.3)

(m.1)

Bn,n’ n/(n/+ 1) n,n’ (B'g)

From these equations, we see that

(mp,q) _ A(-mp.aq) ~

An,n’ - An,n’ ) (B 10)
BP9 = Bl (B-11)
Cr(::llp ) Cr( m.pq) (B-12)
Since ul,, = u?,, ul, = u?,, and ul, = u?,, we can derive expressions

relating the displacement coefficients using equations (B-1) to (B-3):

o) = Zel) C’(m3 (—kgd) , (B-13)
n’/=0

0@ = 3 @ AT (hod) + e, BT (—ksd),  (B-14)
n’=0

a® = fj ) AT (_kad) + €5, B (~ksd) (B-15)
n’=0

1 = Y e O (kad) (B-16)
n'=0

FD = 3 5@ AT (ksd) + 6 B (kgd) | (B-17)
n’=0

@) = Zb?’) AT (ked) + 68, BURD (ksd) (B-18)
n'=0

G = > . k), (B-19)
n'=0



@ = z AT (kgd) + ) BEHD (kgd) (B-20)

n'=0
@ = Z ) AT (kgd) + ) BUAD (kgd) . (B-21)
n’=0

Finally, we note that the scalar translatlon coefficients C (m9) ysed in deriving

the vector translation coefficients A™ i ) and B,(f;f

mz)

are, in general different

used in the translation of the
P waves (L{®)), since in general the P and S waves have different spatial
frequencies. In addition, the translations for the source coefficients al) and
elP) are in opposite directions.

from the vector translation coefficients C,,

The translation from the source coordinate system to the rotated host coor-
dinate system is similar:

i = Zh(” COV (kars) (B-22)
n'=0

i@ = th AT (kgrs) + RS BUD (kgrs) (B-23)
n'=0

@ = Z W AT (kgrs) + hE BED (kgrs) (B-24)
n'=0

Using the results of Stein (1960), we present the coefficients in a rotated
coordinate system. The vector harmonics can be expanded as

ngl,j = ZOD(nm nm’i? (B'2'5)
m'=
MP . = 3 prmn© (B-26)
nm,j m’ nm'!,i y
m'=0
N® Z D(nm (@ (B-27)
nm,j nm’,i ’
m’'=0

where
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(B-28)

n,m . ’ (n—}-m')'(n—m" V2
D( ) — exp[z(ma—i-m’Y)][(n_*_m)!(n—m))!]

ag

X Z ( n + m 0) (n - m) (—1)™™7 [cos (B/2)]7 ™+ (B-29)
[sin (ﬂ/2)]2n—2o—mf-m

and a, 8, and «y are Euler angles using the convention of Edmonds (1957).
The coefficients in the rotated coordinate system, anm i, can be expressed in
the unrotated coordinate system, anmj, as

Anm j = Z D " m)anm:,i ) (B-30)
m/'=0

Therefore, the source coefficients in the host coordinate system for the point
source can be expressed as

o0

e = 3 pom™ Zh(l C D (kars) (B-31)
m’'=0 n’'=0

e? = z prm™ Z hG) AL (kgrs) + h$) B (kgrs) | (B-32)
m/'=0 n’=0
o0 o0

e = S D&M S h hE) AL (kgrs) + h&) BE W (kgrs) - (B-33)

m/=0 n'=0
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